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ABSTRACT 1 

Recent improvements in sequencing technology have enabled the investigation of so-called 2 

“missing heritability”, and a large number of affected subjects have been sequenced in order to 3 

detect significant associations between human diseases and rare variants. However, the cost of 4 

genome sequencing is still high, and a statistically powerful strategy for selecting informative 5 

subjects would be useful. Therefore, in this report, we propose a new statistical method for 6 

selecting cases and controls for sequencing studies based on disease family history. We assume 7 

that disease status is determined by unobserved liability score. Our method consists of two steps: 8 

first, the conditional means of liability are estimated given the individual’s disease status and 9 

those of their relatives with the liability threshold model, and second, the informative subjects are 10 

selected with the estimated conditional means. Our simulation studies showed that statistical 11 

power is substantially affected by the subject selection strategy chosen, and power is maximized 12 

when affected (unaffected) subjects with high (low) risks are selected as cases (controls). The 13 

proposed method was successfully applied to genome-wide association studies for type-2 14 

diabetes, and our analysis results reveal the practical value of the proposed methods. 15 
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INTRODUCTION 

Over the last several decades, DNA sequencing technologies have greatly improved, and 

the rate of decline in sequencing costs has even outpaced Moore’s law [1-4]. This progress has 

enabled well-powered investigations into the associations between human diseases and rare 

variants. Clues to the so-called “missing heritability” problem are also expected to emerge, as 

rare causal variants have been suggested as a possible cause [5, 6]. However, large-scale genetic 

association analyses often suffer from extreme multiple testing problems, and the cost of whole-

genome sequencing is still quite expensive. Furthermore, the common disease-rare variant 

hypothesis [7] assumes multiple rare disease susceptibility loci, suggesting that causal variants 

for each affected subject may be quite different, and this genetic heterogeneity among affected 

subjects has also complicated genetic association analyses. Therefore, in spite of remarkable 

improvement in sequencing technology, development of efficient strategies for selecting 

informative subjects is still necessary, and various statistical methods have been investigated for 

use in genetic association studies. 

Subjects with many affected relatives tend to contain more disease genotypes for heritable 

diseases, and it has been empirically shown that their ascertainment for genetic studies have often 

led to additional improvements in statistical power [8-11]. In particular, the probability of being 

affected depends on both the number of affected/unaffected relatives and familial relationships. 

For instance, subjects with affected siblings have a greater chance of being affected than those 

with unaffected siblings, and the former rather than the latter are often selected for association 

analyses [8-11]. Between subjects with three affected and one unaffected grandparent and those 

with a single affected parent, it is unclear which would be more efficient for genetic association 

studies. However, such complicated scenarios have rarely been considered due to the absence of 

appropriate statistical approaches, and many genetic association studies use only the number of 

affected first-degree relatives [8-11]. 

In this report, we propose a new statistical method for selecting informative subjects 

based on the disease status of their relatives. In our method, quantifying the how informative 

 



subjects are for association analyses requires knowing the prevalence and heritability of diseases 

a priori. In particular, prevalence is defined by the proportion of affected individuals in a 

population, and it is often available for many diseases. However, heritability for dichotomous 

phenotypes, which is defined by the proportion of the total phenotypic variance attributable to 

genetic components and estimated by familial correlation for quantitative phenotypes, can have 

different interpretations according to considered statistical models. For instance, heritability can 

be estimated from twin studies [12] or Falconer’s liability threshold model [13]. The former 

estimates heritability through correlation of the disease status of monozygotic vs. dizygotic twins. 

The latter assumes that there are unobserved liability scores, and heritability is defined by 

correlation of liability scores, which can be understood as a correlation at the model scale [14], 

and some literature shows their asymptotic relationship [15]. Heritability estimation at the 

observed data scale [14] is intuitively easier to understand, but its application to general family 

structures is not straightforward. Therefore, we consider heritability estimates from the liability 

threshold model in the remainder of this report. 

Our model is based on the expectation of unobserved liability scores for subjects when the 

disease status of those subjects and their relatives are conditioned. The liability threshold model 

assumes that the disease status of each subject is affected if the unobserved liability score exceeds 

a threshold that is determined by prevalence; otherwise, the status is unaffected. It should be 

noted that this liability threshold model is equivalent to the probit model for independent samples 

[16]. The unobserved liability scores are assumed to follow the normal distribution, and we 

calculate the conditional expectation with moment-based methods [17]. The proposed method 

can utilize the disease status of any type of relative, and using extensive simulation studies, we 

show that the statistical power is maximized when subjects with high and low risk are selected as 

cases and controls, respectively. The proposed methods were applied to genome-wide association 

studies (GWAS) for type-2 diabetes (T2D) with data collected from the Korea Association 

REsource (KARE) project and Seoul National University Hospital in Korea (SNUH). The 

discovery of promising disease susceptibility loci illustrates the practical value of the proposed 

 



method. 

 

MATERIALS AND METHODS 

Notations and disease model 

We assume that there are n independent subjects and that subject i has ni relatives (i=1, 

…, to n). We assume that the disease locus is biallelic, and denote normal and disease alleles by d 

and D, respectively. Their allele frequencies are assumed to be pd and pD, respectively. The 

genotypes are coded as the number of disease alleles, and genotype frequencies are assumed to 

follow Hardy-Weinberg equilibrium (HWE) in a population. We denote the genotypes of subject i 

and his/her relative j by Gi and Gij
r respectively, and the genotype vectors are defined by 
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We consider the liability threshold model [18], and dichotomous phenotypes are determined by 

the unobserved continuous liability score. The liability scores of subject i and his/her relative j 

are denoted by Li and Lij
r, respectively. The liability vector for relatives of subject i is denoted by 
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We assume that liabilities are determined by summing the environmental effect, main genetic 

effect, polygenic effect, and random error. The environmental effects for subject i and his/her 

relatives are denoted by Zi and Zij
r, and their vectors are defined by 
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Liability scores tend to be similar between family members, and we consider the simple additive 

polygenic effect model. We denote a w×w dimensional identity matrix by Iw and a w dimensional 

column vector, of which all elements are 0 and 1 by 0w and 1w, respectively. Then, if we let 2
gσ  

and 2
eσ  be variances of polygenic effects and random effects, respectively, and let Zi include the 

intercept, we can assume that 

2 2
1 1 1,  ~ ( , ),  ~ ( , ).     (1)
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Here, iΨ  indicates the kinship coefficient matrix for both subject i and his/her relatives. We 

denote the kinship coefficient between subject i and his/her relative j by πij and that between two 

relatives j and j' by '
r
ijjπ . We let di and r

ijd  be the inbreeding coefficient for subject i and his/her 

relative j, respectively; the inbreeding coefficient is a parameter quantifying the departure from 

HWE and ranges from 0 to 1. Then, r
iΨ  and Ψi are defined by 
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 Dichotomous phenotypes for subject i and his/her relative j are denoted by Yi and r
ijY , 

respectively, and they are coded as 1 for cases and 0 for controls. Yi and r
ijY  are determined by Li 

and r
ijL , respectively; if they are larger than a certain threshold, c, they become 1, and otherwise 

they become 0. The phenotype vector for relatives of subject i is denoted by 

1

i

r
i

r
i

r
in

Y

Y

 
 

=  
 
 

Y  , 

and that for subject i and his/her relatives is denoted by 

 



.
r
i

i
iY

 
=  
 

Y
Y  

Several algorithms have been suggested to estimate c with prevalence, q, and heritability, h2, 

known a priori. For instance, if we denote the cumulative function of a standard normal 

distribution by Φ and there are no covariate effects other than the intercept, we can set β0 to be 0 

without the loss of generality, and c can be obtained by the following equation: 

2
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If the environmental effect, Z, follows the normal distribution, and we denote its variance by 2
zσ , 

c can be obtained by 
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Selection of samples with extreme phenotypes 

Subjects with extreme phenotypes lead to improvement of statistical power in genetic 

association studies [19-24], and association analyses have often been conducted with such 

subjects. At the sample selection stage, genotypes of subjects are not known, and we assume β = 

0 in equation (1). We can then define the extreme phenotypes for dichotomous phenotypes by the 

following conditional expectation (CE) of liability scores: 
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CEs were calculated with a moment-based method [17], and the detailed algorithm is provided in 

the Appendix. Once we calculated these for all subjects, na affected subjects with the largest CEs 

and nu unaffected subjects with the smallest CEs were selected for genetic association studies. 

Computation of CEs assumes that h2 (heritability), q (prevalence), Z, and β0 are known. 

 



While h2, q, and Z are often available a priori, the regression coefficients of environment effects 

are usually estimated from logistic regression, and they cannot be used as estimates of β0 in 

equation (1). For independent subjects, liability threshold models are equivalent to the 

generalized linear model with an inverse of a cumulative normal distribution as a link function, 

and if we assume that mean and variance for the cumulative normal distribution are 0 and 1.6, 

respectively, it is approximately equal to the logistic regression [25]. Therefore, if we let 

2 21.6g hσ =  and 2 21.6(1 )e hσ = − , 

regression coefficients from logistic regressions can be directly used as β0. 

 

Statistical power when the family history of disease is controlled 

The statistical power for genetic association analysis with a case-control study design can 

be calculated when the relatives’ phenotypes are conditioned. We consider the liability model in 

equation (1) and assume a major disease gene model. If we let q be the prevalence of the disease 

and we denote the genotype relative risks by 
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under HWE, penetrances can be parameterized by 
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If 2 0gσ = , both conditional probabilities can be simplified to 
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and otherwise, ( | 1, )r
i i iP G Y = Y  can be numerically calculated. DAFs for case i and control i' 

can be obtained by 
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Therefore, if we assume that there are na cases and nu controls and let 
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the statistical power for a Cochran Armitage test [26, 27] under the alternative hypothesis can be 

obtained from 
2
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If we denote the α quantile of the central chi-square distribution with a single degree of freedom 

by ( )2 df 1αχ = , the statistical power at significance level α becomes 

( )
2

2 2( )P df 1, NCP df 1 .
(1 ) (1 )

a u
D D

a a u u
D D a D D u

p p
p p n p p n aχ χ

  − = = > =  − + −   
 

 

Simulation studies 

We assume that there are n subjects with known phenotypes and that na cases and nu 

controls are selected among these for genotyping (n ≥ na + nu). We also assume that phenotypes 

for each subject’s relatives are available, and we consider three different scenarios: (1) 

phenotypes of two parents and four siblings are known; (2) phenotypes of four grandparents, two 

parents, and four siblings are known; and (3) phenotypes of two parents and four siblings are 

known for half of the subjects, and phenotypes of four grandparents, two parents, and four 

siblings are known for the other half. Pedigrees for scenarios 1 and 2 are provided in Figure 1. 

The pD was assumed to be 0.2, and genotype frequencies were obtained under HWE. Founders’ 

 



genotypes in each family were generated from B(2, pD), and the non-founders’ genotypes were 

obtained by randomly generated Mendelian transmissions. To generate phenotypes, we 

considered the disease model in equation (1). We assumed no environmental effect, and β0 was 

assumed to be 0. The polygenic effect and random errors for relatives of subject i were 

independently generated from the multivariate normal distribution with variances 2
gσ  and 2

eσ , 

respectively. The main genetic effect was obtained by the product of β and the number of disease 

alleles. If we let 
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2
gσ  and β are obtained by the assumed h2 and 2

ah . Here, h2 and 2
ah  indicate the heritability and 

the relative proportion of variance explained by the disease genes. Once liabilities were generated, 

they were transformed into affected if larger than the threshold c, and otherwise were considered 

unaffected. The value of c was chosen to preserve the assumed prevalences of q = 0.1 or q = 0.2. 

For the evaluation of type-I errors and power, we assumed ha
2 to be 0 and 0.005, respectively, and 

h2 was assumed to be 0.2 and 0.4, respectively. If ha
2 was set to 0, β became 0, which indicates 

the null hypothesis (no association between genetic variants and phenotypes). Empirical size and 

power estimates were calculated with 2,000 replicates at several significance levels. In each 

replicate, we assumed that n = 10,000, and both na and nu were assumed to be 500. Genetic 

association analyses were conducted under the assumption that genotypes were available only for 

na cases and nu controls. 

 

The KARE cohort 

The KARE cohort was collected to construct an indicator of disease with genetic 

influences in an attempt to predict the occurrence of various diseases. There are 8,842 

participants consisting of 4,183 males and 4,659 females, and they were recruited from two 

Korean community cohorts, Ansung and Ansan, both in the Gyeonggi Province of South Korea. 

Participants are 40 to 69 years old. In total, 1,179 subjects were diagnosed as having T2D by a 

 



standard guideline (glucose at baseline ≥ 126 mg/dL, glucose 120 minutes after the insulin 

challenge ≥ 200 mg/dL, or HbA1c ≥ 6.5%). The disease status of their relatives was collected 

by a survey from all participants, and 1,037 subjects (125 cases and 912 controls) answered that 

they have affected relatives. In total, there were 1,230 affected relatives available. 

The 8,842 subjects were genotyped for 352,228 SNPs with the Affymetrix Genome-Wide 

Human SNP Array 6.0. In our genome-wide association studies, we discarded SNPs for which the 

HWE p-values were less than 10-5, the genotype call rates were less than 95%, and the minor 

allele frequencies (MAF) were less than 0.05. We also eliminated subjects with gender 

inconsistencies, whose identity by state (IBS) was more than 0.8, or whose call rates were less 

than 95%. As a result, 310,515 SNPs for 8,842 subjects were utilized for GWAS. 

 

The SNUH data 

T2D patients were diagnosed by World Health Organization criteria from Seoul National 

University Hospital (SNUH), and 681 subjects with positive family history of diabetes in first-

degree relatives were preferentially included. The disease status of their relatives was obtained 

based on the recall of the proband. However, family members were encouraged to perform a 75 g 

oral glucose tolerance test, and subjects positive for a glutamic acid decarboxylase autoantibody 

test were excluded. In total, the disease status of 7,825 relatives were available, among which 

2,875 subjects had T2D. 

T2D patients were genotyped with the Affymetrix Genome-Wide Human SNP Array 5.0, 

and 480,589 SNP genotypes were obtained. The same quality control conditions were applied as 

for the KARE samples, and 189,610 SNPs and two subjects were excluded. In total, 679 subjects 

with 290,979 SNP genotypes were used for the association analyses. 

 

RESULTS 

 



Relationship between CEs and disease allele frequencies  

Statistical power is positively associated with the difference in DAFs between cases and 

controls; to investigate any effect of the proposed method on DAF, we assessed the relationship 

between DAFs and CEs with simulated data. We assumed that ha
2 = 0.005, h2 = 0.2 or 0.4, and q 

= 0.1 or 0.2, and generated 10,000 subjects based on equation (1) under the assumption that there 

was no environmental effect on phenotype. We then sorted the 10,000 subjects in ascending order 

of CEs, and subjects were categorized into five equal groups by CE. Figure 2 shows the DAFs 

according to CE group for cases and controls and indicates that DAFs are proportionally related 

to CEs. Therefore, we concluded that maximal differences in DAFs between cases and controls 

could be obtained if affected subjects with the largest DAFs and unaffected subjects with the 

smallest DAFs were ascertained. 

 

Evaluation of selection strategy with simulated data 

We investigated the effect of the selection strategy with simulated data. We considered 

five different strategies for selecting cases and controls: (S1) cases and controls were randomly 

selected from affected and unaffected subjects, respectively; (S2) affected subjects with the 

highest CEs were selected as cases, and controls were randomly selected; (S3) affected subjects 

with the highest CEs and unaffected subjects with the lowest CEs were selected as cases and 

controls, respectively; (S4) cases were randomly selected, and unaffected subjects with the lowest 

CEs were selected as controls; and (S5) affected subjects with the lowest CEs and unaffected 

subjects with the highest CEs were selected as cases and controls, respectively. Genetic 

association analyses were conducted with the logistic regression. Empirical type-I errors and 

power were evaluated for each scenario with 2,000 replicates. Quantile-quantile (QQ) plots 

(Figure 3) show that the nominal significance level was generally well preserved for scenario 1, 

and the empirical type-I error rates generally preserved the nominal significance level (Table 1). 

Figures 4–5 and Tables 2–3 show that the nominal significance levels were generally well 

preserved for scenarios 2 and 3 as well. Therefore, we can conclude that selection of cases and 

 



controls using CEs does not affect statistical validity. 

Empirical power levels were calculated at 0.005, 0.05, and 0.01 significance levels. We 

assumed that ha
2 = 0.005, h2 = 0.2 or 0.4, and q = 0.1 or 0.2. Table 4 (scenario 1) shows that S3 

was always the most efficient strategy, followed by S2 and S4. Interestingly, the statistical power 

estimates for S3 tended to be larger when the prevalence was larger and heritability was smaller, 

which indicates that the proposed method would be useful for common diseases. S5 always gave 

the highest rates of false-negative findings, as this strategy minimizes differences in DAFs 

between cases and controls. Table 5 (scenario 2) and Table 6 (scenario 3) show very similar 

patterns to scenario 1. Therefore, we concluded that cases and controls ascertained with S3 leads 

to substantial improvement in power. 

 

Robustness of CE to choices of prevalence and heritability 

The proposed selection strategy requires heritability and prevalence estimates, and the 

efficiency of the selection strategy can depend on the accuracy of these estimates. Therefore, we 

evaluated the sensitivity of the proposed method to misspecification of h2 and q values using 

simulated data. We considered the family structures in scenario 3, and the DAF in the population 

was assumed to be 0.2. Phenotypes for 10,000 subjects were generated with ha
2 = 0.005, h2= 0.3, 

and q = 0.3. To evaluate the effect of misspecified values for (h2, q), these values were set to (0.1, 

0.1), (0.2, 0.2), (0.4, 0.4), and (0.5, 0.5) for calculating CEs. Table 7 shows the relative ratio of 

power estimates for misspecified h2 and q compared to the results when h2 and q are correctly 

specified, with a value of 100 indicating that the power estimates are not affected. Results 

showed that the effect of misspecification of h2 and q seems to be almost negligible, at least for 

the considered simulation models. 

Furthermore, ascertained cases and controls remain unchanged as long as the ranks of 

calculated CEs among cases (and controls) stay the same. We calculated the correlations between 

orders of true CEs and those with misspecified h2 and q. Figure 6 gives the contour plot of these 

 



correlations. It shows that correlations were always greater than 0.998, even when there were 

substantial differences between the true and misspecified h2 and q. Therefore, we can conclude 

that the rank of CEs remains largely the same, regardless of the values of h2 and q used. 

 

Application to genome-wide association of type-2 diabetes 

 We used the proposed method to select cases and controls from KARE and SNUH 

samples for genetic association analyses of T2D. There were a total of 9,523 subjects (8,842 

subjects from KARE and 681 subjects from SNUH). We excluded variants for which HWE p-

values were less than 10-5, missing rates were greater than 5%, or MAFs were less than 0.05 and 

subjects whose call rates were less than 95% or IBS was more than 0.8. The remaining 9,521 

subjects with 272,795 SNP genotypes were used for the analyses, and phenotypes of 7,804 

relatives were available. 

In the Korean population, about 9.9% of adults over 30 years of age were expected to 

have T2D in 2009 [28], and the heritability of T2D has been reported to be approximately 26% 

[29]. Therefore, we set the prevalence and heritability values at 0.099 and 0.26, respectively, and 

calculated CEs for the 9,521 subjects using the T2D status of their relatives. Based on these CEs, 

we selected 1,000 cases and 4,000 controls with S1 and S3. To adjust for population substructure, 

we calculated a genetic relationship matrix and applied the EIGENSTRAT approach [30]. We 

obtained the top ten principal component (PC) scores with the largest eigenvalues, and they were 

included as covariates. We also included sex, age, and squared age as covariates. 

The QQ-plots in Figure 7 show that GWAS using all subjects and using only the cases and 

controls ascertained with S1 and S3 preserve the nominal significance levels, and we concluded 

therefore that our analyses were statistically valid. Figure 8 shows Manhattan plots for the 

analyses, with the genome-wide significance level adjusted by Bonferroni correction (1.872×10-7) 

indicated by dashed horizontal lines. The Manhattan plots reveal that the most significant results 

were obtained from GWAS using all subjects, followed by GWAS using cases and controls 

 



ascertained with S3. Table 8 shows results for SNPs that were significant in at least one of the 

GWAS analyses, and it has been reported in some researches that rs10946398, rs7754840, 

rs9465871, rs7747752, rs9348440 and rs10811661 are associated with T2D. Results showed that 

GWAS using cases and controls ascertained with S3 produced more significant SNPs than GWAS 

using cases and controls ascertained with S1. With the exception of rs10811661, p-values of all 

SNPs from the S3 GWAS were smaller than those from the S1 GWAS, and the genome-wide 

significance of SNPs from the S3 GWAS was much larger. Therefore, we can conclude that cases 

and controls ascertained with S3 leads to substantial improvement of power for GWAS. 

 

DISCUSSION 

It has been repeatedly discussed that family history of disease is related to statistical 

power [8-11]. However, the effect of family history of disease on genetic association analyses has 

not been carefully investigated, and its use for genetic association analyses has been limited. For 

instance, affected subjects may be selected for genetic association analyses only if they have at 

least a certain number of affected relatives [31]. The effect of family history of disease on genetic 

association analyses is related to both familial distance between relatives and the number of 

affected and unaffected relatives. In this report, we proposed a new statistical method for 

selecting the most informative cases and controls based on family history of disease. The 

proposed measures simultaneously take into account both familial distance and number of 

relatives, and we show that cases and controls ascertained with the proposed method leads to a 

substantial improvement in power. Our simulation results show that this increase in power should 

be much larger for common and less heritable diseases. The proposed method was implemented 

with R code, and it can accept various input file formats such as vcf, PLINK, and gen files. It can 

be freely downloaded from http://healthstat.snu.ac.kr/software/selSAMPLE. 

Furthermore, we showed that DAFs are dependent on the family history of disease, which 

indicates that ascertainment bias for genetic association analysis can be serious if the family 

 



structures are heterogeneous among subjects since it makes DAFs for each family different. It has 

been also shown that adjustment of heterogeneous ascertainment bias can lead to substantial 

power improvement for family-based association studies [32, 33], and this effect on statistical 

power tends to be substantial for highly heritable diseases. The proposed method can be used 

with minor modifications to adjust the heterogeneous ascertainment bias. For instance, we can 

calculate CEs for cases and controls with the proposed moment-based methods, and dichotomous 

phenotypes can be modified with their CEs. The most efficient approach for modifying CEs still 

requires further investigation. 

However, despite the flexibility of the proposed method, there are some limitations. First, 

our method assumes that the liability scores follow the multivariate normal distribution, and the 

estimated CEs may be biased if multivariate normality is violated [34]. The generalized linear 

model can be understood as a latent variable model if its link function is an inverse function of 

some cumulative distribution [16]. For instance, link functions for logistic and probit regression 

are inverse functions of the cumulative logistic and standard normal distribution functions, 

respectively. Therefore, our liability threshold model can be considered an extended probit model 

[16], and the distribution of unknown liability scores can be chosen by comparing several 

candidate link functions with Akaike information criteria [35]. Second, there may be recall bias 

for the family history of disease, and such an effect can be substantial if accuracy is 

heterogeneous between cases and controls. Third, the proposed method requires that heritability 

and prevalence are known a priori. However, with misspecification of these values, cases and 

controls ascertained with the proposed method remain the same as long as the order of CEs 

among affected or unaffected subjects is preserved. In this context, our simulation studies showed 

that the proposed method is robust against misspecified heritabilities and prevalences for at least 

the considered scenarios. However, this robustness may be limited to the tested simulation 

scenarios, and extensive simulation studies are necessary to fully evaluate the sensitivity of the 

proposed method. 

 



Since high throughput sequencing technology has been introduced, substantial reductions 

in cost for large-scale genetic association analyses have occurred, and many genetic association 

analyses have been launched to identify disease susceptibility loci. However, large-scale genetic 

analyses suffer from serious multiple-testing problems, and sequencing is still often more 

expensive than phenotyping. Therefore, various statistical methods have been investigated to 

improve power. Our results reveal that additional statistical power can be achieved in association 

analyses with carefully selected cases and controls, and that the family history of disease is very 

useful for this purpose. Furthermore, the family history of disease is often obtained at relatively 

little cost, and therefore the proposed method may be a useful strategy for the success of genome-

wide association analyses. 
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APPENDIX 

Calculation of the conditional expectation (CE) 

Conditional expectation (CE) is derived with the moment-based approach with minor 

modifications [17]. If we let IA(·) be an indicator function and define that 
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We use the moment-generating function (mgf) of the truncated multivariate normal distribution to 

calculate the conditional distribution. By definition, we can define the joint probability density 

function (pdf) of Li by 
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i i in it t t ′=t  . We let i i i=ξ Σ t , and then the exponential term of mgf can be 

simplified to  
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and mgf becomes 
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We let σijk indicate the (j,k)th element of Σi and ( )ikF x  indicate a marginal pdf for the kth 

element of Li of the conditional pdf, ( )
i ifα L , i.e., 
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Derivation of ( )ijF x  

The (ni+1)-dimensional liability vector, Li, can be partitioned into (Li)-j and Lij
r for j = 

1,…,ni or Li
r and Li for j = ni+1. For notational convenience, we only considered j = ni+1, which 

can be readily extended to the other subjects. The partitioned liability vector has the following 

distribution: 
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If we denote the lower and upper truncated points of Li as ai and bi respectively, the truncated 

points for Li are defined as 
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When ai < Li < bi, the truncated normal distribution function is 
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By the property of multivariate normal distribution, the marginal pdf of Li at Li = x is given by 
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Because a conditional distribution of a normal distribution is also normally distributed, we know 

that Li
r| Li = x is normally distributed with  
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pmvnorm() in the R package mvtnorm. 
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Table 1. Empirical type-I error estimates for scenario 1. Scenario 1 was considered for family 

structures of subjects’ relatives. The empirical type-I errors were estimated with 2,000 replicates, 

and heritabilities were set to be 0.2 and 0.4. 

 

h2 q Significance 
levels S1 S2 S3 S4 S5 

0.2 

0.1 
0.005 0.0055 0.0065 0.0040 0.0070 0.0050 
0.01 0.0070 0.0135 0.0090 0.0100 0.0105 
0.05 0.0515 0.0605 0.0510 0.0525 0.0555 

0.2 
0.005 0.0020 0.0050 0.0040 0.0070 0.0070 
0.01 0.0050 0.0090 0.0100 0.0110 0.0115 
0.05 0.0395 0.0430 0.0550 0.0540 0.0520 

0.4 

0.1 

0.005 0.0045 0.0045 0.0050 0.0040 0.0060 
0.01 0.0090 0.0120 0.0115 0.0085 0.0145 

0.05 0.0440 0.0475 0.0450 0.0445 0.0495 

0.2 

0.005 0.0050 0.0050 0.0045 0.0035 0.0070 
0.01 0.0110 0.0095 0.0085 0.0085 0.0105 

0.05 0.0555 0.0490 0.0460 0.0470 0.0510 
 

 

 

  

 



Table 2. Empirical type-I error estimates for scenario 2. Scenario 2 was considered for family 

structures of subjects’ relatives. The empirical type-I errors were estimated with 2,000 replicates, 

and heritabilities were set to be 0.2 and 0.4. 

 

h2 q Significance 
levels S1 S2 S3 S4 S5 

0.2 

0.1 
0.005 0.0035 0.0035 0.0040 0.0040 0.0040 
0.01 0.0075 0.0095 0.0090 0.0095 0.0105 
0.05 0.0500 0.0560 0.0500 0.0500 0.0500 

0.2 
0.005 0.0070 0.0030 0.0050 0.0065 0.0065 
0.01 0.0145 0.0095 0.0080 0.0095 0.0090 
0.05 0.0545 0.0415 0.0455 0.0460 0.0535 

0.4 

0.1 

0.005 0.0055 0.0090 0.0075 0.0045 0.0035 
0.01 0.0100 0.0155 0.0120 0.0090 0.0095 

0.05 0.0455 0.0555 0.0520 0.0420 0.0440 

0.2 

0.005 0.0070 0.0050 0.0030 0.0035 0.0055 
0.01 0.0130 0.0100 0.0075 0.0065 0.0110 

0.05 0.0530 0.0570 0.0535 0.0500 0.0475 
 

  

 



Table 3. Empirical type-I error estimates for scenario 3. Scenario 3 was considered for family 

structures of subjects’ relatives.  The empirical type-I errors were estimated with 2,000 

replicates, and heritabilities were set to be 0.2 and 0.4. 

 

h2 q Significance 
levels S1 S2 S3 S4 S5 

0.2 

0.1 
0.005 0.0050 0.0045 0.0030 0.0025 0.0035 
0.01 0.0070 0.0090 0.0080 0.0085 0.0085 
0.05 0.0470 0.0450 0.0580 0.0525 0.0515 

0.2 
0.005 0.0040 0.0055 0.0060 0.0070 0.0065 
0.01 0.0075 0.0090 0.0105 0.0120 0.0135 
0.05 0.0420 0.0440 0.0570 0.0570 0.0495 

0.4 

0.1 
0.005 0.0060 0.0075 0.0055 0.0025 0.0050 
0.01 0.0095 0.0135 0.0105 0.0095 0.0115 
0.05 0.0450 0.0560 0.0480 0.0500 0.0515 

0.2 
0.005 0.0055 0.0040 0.0060 0.0040 0.0045 
0.01 0.0085 0.0075 0.0120 0.0080 0.0085 
0.05 0.0475 0.0450 0.0460 0.0480 0.0455 

 

  

 



Table 4. Empirical power estimates for scenario 1. The empirical power levels were estimated 

with 2,000 replicates at several significance levels. We assume that ha
2=0.005, h2 = 0.2 and 0.4, 

and q = 0.1 and 0.2. 

 

h2 q Significance 
levels S1 S2 S3 S4 S5 

0.2 

0.1 
0.005 0.2675 0.4820 0.6635 0.4255 0.0030 
0.01 0.3505 0.5795 0.7450 0.5245 0.0085 
0.05 0.5880 0.8070 0.8980 0.7545 0.0520 

0.2 
0.005 0.2210 0.5520 0.8220 0.4825 0.0095 
0.01 0.2840 0.6515 0.8815 0.5745 0.0195 
0.05 0.5260 0.8480 0.9645 0.7790 0.0930 

0.4 

0.1 
0.005 0.2700 0.4445 0.6090 0.4325 0.0085 
0.01 0.3525 0.5285 0.6925 0.5130 0.0155 
0.05 0.5950 0.7640 0.8670 0.7530 0.0675 

0.2 
0.005 0.1825 0.4730 0.7010 0.4210 0.0055 
0.01 0.2425 0.5625 0.7825 0.5005 0.0135 
0.05 0.4725 0.7855 0.9215 0.7210 0.0530 

 
 

  

 



Table 5. Empirical power estimates for scenario 2. The empirical power levels were estimated 

with 2,000 replicates at several significance levels. We assume that ha
2=0.005, h2 = 0.2 and 0.4, 

and q = 0.1 and 0.2. 

 

h2 q Significance 
levels S1 S2 S3 S4 S5 

0.2 

0.1 
0.005 0.2715 0.4960 0.7275 0.5165 0.0070 
0.01 0.3555 0.5855 0.7970 0.6160 0.0110 
0.05 0.6115 0.8010 0.9320 0.8240 0.0415 

0.2 
0.005 0.1930 0.5940 0.9000 0.5485 0.0165 
0.01 0.2750 0.6840 0.9310 0.6530 0.0270 
0.05 0.5030 0.8595 0.9775 0.8415 0.0960 

0.4 

0.1 
0.005 0.2630 0.4355 0.6425 0.4625 0.0060 
0.01 0.3540 0.5285 0.7320 0.5585 0.0120 
0.05 0.5955 0.7495 0.8930 0.7875 0.0555 

0.2 
0.005 0.1910 0.5080 0.7940 0.4870 0.0050 
0.01 0.2695 0.5975 0.8520 0.5800 0.0080 
0.05 0.4985 0.8030 0.9525 0.7885 0.0480 

 
 

  

 



Table 6. Empirical power estimates for scenario 3. The empirical power levels were estimated 

with 2,000 replicates at several significance levels. We assume that ha
2=0.005, h2 = 0.2 and 0.4, 

and q = 0.1 and 0.2. 

 

h2 q Significance 
levels S1 S2 S3 S4 S5 

0.2 

0.1 
0.005 0.2700 0.4970 0.7475 0.5180 0.0045 
0.01 0.3490 0.5825 0.8065 0.6075 0.0095 
0.05 0.5980 0.7950 0.9245 0.8120 0.0405 

0.2 
0.005 0.2135 0.5635 0.8860 0.5770 0.0185 
0.01 0.2850 0.6505 0.9215 0.6595 0.0340 
0.05 0.5380 0.8385 0.9825 0.8565 0.1130 

0.4 

0.1 
0.005 0.2615 0.4455 0.6375 0.4470 0.0090 
0.01 0.3485 0.5330 0.7205 0.5390 0.0185 
0.05 0.5855 0.7570 0.8795 0.7710 0.0655 

0.2 
0.005 0.2130 0.4695 0.7860 0.5025 0.0090 
0.01 0.2890 0.5775 0.8475 0.6005 0.0175 
0.05 0.5020 0.7890 0.9515 0.7990 0.0570 

 
  

 



Table 7. Empirical relative power estimates for misspecified heritabilities and prevalences 

for scenario 3. The empirical power levels were estimated with 2,000 replicates at several 

significance levels and the ratios of the power estimates from misspecified (h2, q) to those from 

the correctly defined (h2, q) were calculated in percentage. We assume that ha
2=0.005, and (h2, q) 

= (0.3, 0.3) for generating phenotypes, and four misspecified pairs of (h2, q) were considered. 
 

h2 q Significance 
levels S1 S2 S3 S4 S5 

0.1 0.1 
0.005 102.899 100.705 99.888 100.657 88.235 
0.01 103.586 99.774 99.946 99.841 92.857 
0.05 100.106 98.425 100.154 100.540 100.000 

0.2 0.2 
0.005 104.348 98.325 100.503 101.221 97.059 
0.01 102.110 98.417 100.270 101.351 98.214 
0.05 98.301 98.308 99.897 101.439 97.222 

0.4 0.4 
0.005 106.087 97.884 100.447 101.972 91.176 
0.01 106.118 97.513 100.486 101.510 91.071 
0.05 96.603 99.650 100.410 98.741 103.333 

0.5 0.5 
0.005 95.072 101.146 100.280 102.723 88.235 
0.01 99.367 99.925 100.054 103.021 94.643 
0.05 102.866 99.242 100.513 100.540 104.444 

 

  

 



Table 8. Results from GWAS. The significance level adjusted by Bonferroni correction is 

1.872×10-7 and significant SNPs are indicated in bold type. 

 

SNP CHR POS Gene 
GWAS 

using all 
subjects 

GWAS 
using S1 

GWAS 
using S3 

rs10946398 6 20661034 CDKAL1 8.25×10-19 2.03×10-9 3.35×10-15 

rs7754840 6 20661250 CDKAL1 7.03×10-17 1.82×10-8 1.88×10-12 

rs9460546 6 20663632 CDKAL1 5.10×10-16 6.53×10-8 3.91×10-12 

rs9465871 6 20717255 CDKAL1 8.91×10-16 2.40×10-7 1.61×10-11 

rs7747752 6 20725423 CDKAL1 1.31×10-15 1.69×10-7 5.39×10-12 

rs7767391 6 20725240 CDKAL1 1.84×10-15 1.78×10-7 7.21×10-12 

rs9348440 6 20641336 CDKAL1 1.20×10-14 5.90×10-7 3.35×10-11 

rs2328549 6 20718240 CDKAL1 3.53×10-14 2.48×10-6 5.02×10-11 

rs2328529 6 20631953 CDKAL1 5.52×10-10 3.35×10-6 4.34×10-7 

rs10811661 9 22134094 CDKN2B-AS1 2.84×10-9 1.51×10-8 1.04×10-6 

rs7741604 6 20731524 CDKAL1 4.74×10-9 1.16×10-5 2.23×10-6 

rs1526959 12 79753790 SYT1 1.16×10-8 3.00×10-3 2.89×10-6 

rs4291090 6 20570039 CDKAL1 1.81×10-8 3.20×10-4 6.40×10-7 

rs2820001 6 20758943 CDKAL1 3.23×10-8 9.19×10-5 2.05×10-5 

rs10946406 6 20758760 CDKAL1 4.01×10-8 1.61×10-2 5.02×10-7 

rs2294809 6 20599888 CDKAL1 4.52×10-8 4.90×10-4 2.41×10-6 

rs9366357 6 20599628 CDKAL1 6.09×10-8 4.34×10-4 4.22×10-6 

rs12679402 8 41958980 AP3M2 8.45×10-5 2.53×10-3 1.26×10-8 

 

  

 



Figure 1. Family history of disease. The person indicated by an arrow is a proband. 

 

(a) scenario 1 (b) scenario 2 

 
 

 

 

 

  

 



Figure 2. DAFs according to CEs. Figure 2A and Figure 2B shows DAFs for cases and controls 

respectively. All subjects were sorted with CEs and classified to 5 different groups with CEs. 

 
 

  

 



Figure 3. QQ-plots of simulated data for scenario 1. We assume that h2=0.2 and q = 0.1 and 

Scenario 1 was assumed for relatives’ family structure. QQ-plots were generated from 2,000 

replicates. 

 

 
 

  

 



Figure 4. QQ-plots of simulated data for scenario 2. We assume that h2=0.2 and q = 0.1 and 

Scenario 2 was assumed for relatives’ family structure. QQ-plots were generated from 2,000 

replicates. 

 

 
 

  

 



Figure 5. QQ-plots of simulated data for scenario 3. We assume that h2=0.2 and q = 0.1 and 

Scenario 3 was assumed for relatives’ family structure. QQ-plots were generated from 2,000 

replicates. 

 

 
 

  

 



Figure 6. Contour plot for the correlation between orders of CEs calculated from true and 

misspecified (h2, q). Orders of CEs were obtained for the various choices of heritability and 

prevalence and their correlations with true orders were calculated. Data was generated from (h2, q) 

= (0.3, 0.3) and ‘ⅹ’ is a point where correlation is exactly 1. 

 
  

 



Figure 7. QQ-plots for the results from GWAS of T2D. 
 

 

  

 



Figure 8. Manhattan-plots for the results from GWAS of T2D. 
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